

M​ODERN​ C​ODE​ R​EVIEW​ P​ERFORMANCE​ ​AND​ H​UMAN​ F​ACTORS

This briefing reports scientific evidence of
18 studies that investigate human factors
and their relationship to modern code
review performance.

FINDINGS
Review performance and reviewers’ age and
experience.
A study on over 100,000 peer reviews from open
source projects (Apache, Subversion, Linux Kernel,
FreeBSD, KDE and Gnome) found that sub-system
expertise is a good indicator for review quality
[PR5]. This relationship has also been observed in
Microsoft [PR14], Mozilla [OG12, HF10], Qt, and
Openstack [OG16].
Files reviewed by experienced reviewers showed
also to be less vulnerable, as a study on the
Chromium browser showed [OG8].
A survey at Mozilla also found that reviewer
experience is an important factor for review time
and if a patch is accepted or rejected [HF10].
A study on many open source projects (Android,
LibreOffice, Openstack, QT) showed that the
likelihood of a developer accepting a review task
depends to a large degree on his or her familiarity
with the code [HF1]. If only one expert exists on a
sub-system, one strategy could be to always select
the same reviewer to establish expertise over
time. Another suggestion is to let senior
developers self-select the code they are interested
in and are competent to review.
A study on reviews in the Eclipse, Openstack and
QT projects investigated the influence of
experience (both of developer and reviewer) on
code reviews [HF6]. The findings suggest that
contributions by new developers are not reviewed
by experienced reviewers. Also, code from new
developers does not receive more attention during
review. However, code from new developers is
less likely to be merged.
A similar observation was made in a study on
reviews in the Webkit and Blink open source
projects [HF11]. Another study investigated if age
affects reviewing performance [HF8]. The study
compared students in their 20’s and 40’s showed
no difference based on age or development
experience.
Finally, there exists some early work on harvesting
reviewer experience through crowdsourcing the
creation of rules and suggestions [HF12].
What we think: There is clear evidence that
reviewer experience has an impact on review
quality. This is not surprising in itself, might
however be helpful when developing systems that
suggest reviewers automatically. These systems
could also make sure that reviewers get a good mix
of reviews on familiar code and unknown code so
that they expand their expertise over time.
Experienced reviewers possess tacit knowledge
that is difficult to formalize and convey to novice
programmers. Systems that could mine this
knowledge from reviews would be an interesting
avenue for research.
Review performance and reviewers’ reviewing
patterns and focus.
Eye tracking has been used in several studies to
investigate how developers review code.
Researchers found that a particular eye
movement, the scan pattern, is correlated with
defect detection speed [HF2, HF3, HF5]. In the
scan pattern, the reviewer first reads briefly the
code from top to bottom and then focuses on

particular portions. The more time the developer
spends on scanning, the more efficient is the
defect detection [HF3]. Based on these results,
researchers have also stipulated that reviewing
skill and defect detection capability can be
deduced from eye movement [HR7].
What we think: Eye tracking is an interesting
approach to study how code reviewers perform
their task. It would be interesting to study if IDEs or
code review tools could be adapted to support the
scanning pattern. Until such support exists, a
sensible recommendation would be that novice
reviewers should first read the whole code, to get
an overview, and then focus on individual parts.
Review performance and reviewers’ workload.
The impact of workload on code reviews has been
investigated from two perspectives. First, a study
on the Mozilla project found that workload
(measured in pending review requests) negatively
impacts review quality in terms of bug detection
effectiveness [OG12]. Second, a study crossing
several open source projects (Android, LibreOffice,
Openstack, QT) found that workload (measured in
concurrent and remaining review tasks) negatively
impacts the likelihood that the reviewers accepts a
new review invitation [HF1].
What we think: While both findings are not
surprising, the studies provide some compelling
evidence that reviewer workload must be
considered when distributing reviewing tasks. Since
these studies were conducted in open source
projects, it would be interesting if the findings hold
true also in closed source software development.
Review performance and reviewers’ social
interactions.
Code reviews have been studied with different
theoretical lenses on social interactions. A study
on the Android, Openstack and QT open source
projects used social network analysis to model
reviewer relationships and found that the most
active reviewers are at the center of peer review
networks [OG2].
Another study, again looking at reviews from
Openstack and QT, used the snowdrift game (a
game similar to the famous prisoners dilemma) to
model the motivations of developers participating
in code reviews [OG6]. They describe two
motivations: (i) a reviewer has a motive of
choosing a different action (review, not review)
from the other reviewer, and (ii) a reviewer
cooperates with other reviewers when the benefit
of review is higher than the cost.
Finally, a study on the Mozilla project found that
past participation in reviews on a particular
subsystem is a good predictor for accepting future
review invitations [HF1]. Other factors, such as
code authoring experience, and familiarity
between the reviewer and the patch author, also
play a role in the decision of accepting review
invitations.
What we think: Using game and social network
theory on the peer relationships of code reviewers
and developers is an interesting angle. We are
curious how these results can be used to support
practical decision making, e.g., when planning for
expertise redundancy or matching reviewers.
Review performance and reviewers’
understanding of each other's code.
A study on the reviews in the Android project
investigated if reviewers’ confusion can be
detected by humans and if a classifier can be
trained to detect reviewers’ confusion in review
comments [HF9]. The study defines confusion in
seven categories: hedges, probables and
hypotheticals representing indirect expressions of

uncertainty; questions requesting a solution; I
statements and nonverbals describing direct
psychological expression of uncertainty; and meta
capturing the discussion of uncertainty. While
humans are quite capable of detecting confusion,
automated detection is still challenging.
What we think: Knowing when code and code
reviews could lead to misunderstandings is a
powerful decision aid that can be used to train
developers and reviewers. Recognizing confusion in
reviews could also be useful to direct the attention
of experienced reviewers that could help to clarify
the situation.
Review performance and reviewers’ perception
of code and review quality.
A survey study conducted among reviewers in the
Mozilla project identified factors that determine
their perceived quality of code and code reviews
[HF10]. High quality reviews provide clear and
thorough feedback, in a timely manner, by a peer
with a supreme knowledge of the code base,
strong personal and interpersonal qualities.
Challenges to achieve high quality reviews are of
technical (familiarity with the code, coping with
code complexity, suitable tool support) and
personal (time management, technical skills and
context switching) nature.
What we think: This study provides a snapshot of a
particular context (an open source project). It
would be interesting to study whether and how
tradeoffs among code and review quality aspects
are handled differently in other contexts.

References

ID Title Link

HF1
The Impact Of Human Factors On The Participation Decision Of Reviewers
In Modern Code Review http://socsel.sys.wakayama-u.ac.jp/publications/journal/EMSE2018_Shade.pdf

HF2
Exploiting Eye Movements For Evaluating Reviewer'S Performance In
Software Review

https://uwanolab.jp/pman/data/pdf/7.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.8125&rep=rep1&type=pdf

HF3
An Eye-Tracking Study On The Role Of Scan Time In Finding Source Code
Defects

http://www.cs.kent.edu/~jmaletic/papers/ETRA12.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.381.2034&rep=rep1&type=pdf

HF5 Eye Movements In Code Review https://andrewbegel.com/papers/eye-movements-code-review.pdf

HF6 Code Review for Newcomers: Is It Different? https://sback.it/publications/chase2018.pdf

HF7
A Fuzzy Inference System To Recommend Skills For Source Code Review
Using Eye Movement Data

Please contact one of the authors of this evidence briefing to receive a copy of this paper.

HF8 Wap: Does Reviewer Age Affect Code Review Performance? Please contact one of the authors of this evidence briefing to receive a copy of this paper.

HF11
Investigating Technical And Non-Technical Factors Influencing Modern
Code Review

http://svn-plg.uwaterloo.ca/~migod/papers/2015/ese_2015_baysal.pdf

http://129.97.186.80/~migod/papers/2015/ese_2015_baysal.pdf

HF10 Code Review Quality: How Developers See It

https://plg.uwaterloo.ca/~migod/papers/2016/icse16.pdf

http://olgabaysal.com/pdf/icse2016.pdf

HF12 Towards Crowdsourced Large-Scale Feedback For Novice Programmers http://michin01.github.io/vlhcc2014gc.pdf

HF9 Confusion Detection In Code Reviews

http://www.win.tue.nl/~aserebre/ICSME2017Felipe.pdf

OG2 Social Network Analysis In Open Source Software Peer Review

https://www.researchgate.net/profile/Xin_Yang73/publication/283442347_Social_Network_A

nalysis_in_Open_Source_Software_Peer_Review/links/5638654108ae4bde50213382.pdf

OG6
Code Review Participation: Game Theoretical Modeling of Reviewers in
Gerrit Datasets

https://www.researchgate.net/profile/Hideaki_Hata/publication/303323826_Code_review_p

articipation_game_theoretical_modeling_of_reviewers_in_gerrit_datasets/links/5b3c4725a6f

dcc8506eee153/Code-review-participation-game-theoretical-modeling-of-reviewers-in-gerrit-

datasets.pdf

OG8
An Empirical Investigation Of Socio-Technical Code Review Metrics And
Security Vulnerabilities Please contact one of the authors of this evidence briefing to receive a copy of this paper.

OG12 Investigating Code Review Quality: Do People And Participation Matter?

http://svn-plg.uwaterloo.ca/~migod/papers/2015/icsme15-OleksiiOlgaLatifa.pdf

OG16
Revisiting Code Ownership And Its Relationship With Software Quality In
The Scope Of Modern Code Review

https://sail.cs.queensu.ca/Downloads/ICSE2016_RevisitingCodeOwnershipAndItsRelationship

WithSoftwareQualityInTheScopeOfModernCode%20Review.pdf

PR5
Contemporary Peer Review In Action: Lessons From Open Source
Development https://users.encs.concordia.ca/~pcr/paper/Rigby2012IEEE.pdf

PR14
Code Reviews Do Not Find Bugs. How The Current Code Review Best
Practice Slows Us Down https://www.microsoft.com/en-us/research/wp-content/uploads/2015/05/PID3556473.pdf

https://andrewbegel.com/papers/eye-movements-code-review.pdf
https://sback.it/publications/chase2018.pdf
http://michin01.github.io/vlhcc2014gc.pdf
https://drive.google.com/open?id=1CWxvz-BLaRd-qMbf7gwHvSOYLYkutN3q
https://www.researchgate.net/profile/Xin_Yang73/publication/283442347_Social_Network_Analysis_in_Open_Source_Software_Peer_Review/links/5638654108ae4bde50213382.pdf
https://www.researchgate.net/profile/Xin_Yang73/publication/283442347_Social_Network_Analysis_in_Open_Source_Software_Peer_Review/links/5638654108ae4bde50213382.pdf
https://www.researchgate.net/profile/Hideaki_Hata/publication/303323826_Code_review_participation_game_theoretical_modeling_of_reviewers_in_gerrit_datasets/links/5b3c4725a6fdcc8506eee153/Code-review-participation-game-theoretical-modeling-of-reviewers-in-gerrit-datasets.pdf
https://www.researchgate.net/profile/Hideaki_Hata/publication/303323826_Code_review_participation_game_theoretical_modeling_of_reviewers_in_gerrit_datasets/links/5b3c4725a6fdcc8506eee153/Code-review-participation-game-theoretical-modeling-of-reviewers-in-gerrit-datasets.pdf
https://www.researchgate.net/profile/Hideaki_Hata/publication/303323826_Code_review_participation_game_theoretical_modeling_of_reviewers_in_gerrit_datasets/links/5b3c4725a6fdcc8506eee153/Code-review-participation-game-theoretical-modeling-of-reviewers-in-gerrit-datasets.pdf
https://www.researchgate.net/profile/Hideaki_Hata/publication/303323826_Code_review_participation_game_theoretical_modeling_of_reviewers_in_gerrit_datasets/links/5b3c4725a6fdcc8506eee153/Code-review-participation-game-theoretical-modeling-of-reviewers-in-gerrit-datasets.pdf
https://sail.cs.queensu.ca/Downloads/ICSE2016_RevisitingCodeOwnershipAndItsRelationshipWithSoftwareQualityInTheScopeOfModernCode%20Review.pdf
https://sail.cs.queensu.ca/Downloads/ICSE2016_RevisitingCodeOwnershipAndItsRelationshipWithSoftwareQualityInTheScopeOfModernCode%20Review.pdf
https://users.encs.concordia.ca/~pcr/paper/Rigby2012IEEE.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2015/05/PID3556473.pdf

